F.E. (Semester - II) Examination, November - 2018 ENGINEERINGMATHEMATICS-II (New)

 Sub. Code : 59933

 Sub. Code : 59933}

Day and Date : Wednesday, 28-11-2018
Time : 02.30 p.m. to 05.30 p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.
4) Assume Suitable data if necessary.

SECTION - I

Q1) Attempt ANY THREE:

a) Solve $y e^{x y} d x+\left(x e^{x y}+2 y\right) d y=0$.
b) Solve $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
c) Solve $e^{-y} \sec ^{2} y d y=d x+x d y$.
d) Solve $y\left(2 x y+e^{x}\right) d x=e^{x} d y$.

Q2) Attempt any three.
a) Find the orthogonal trajectory of the family of curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1, \lambda$ being parameter.
b) Solve the equation $L \frac{d i}{d t}+R i=E_{0} \sin \omega \mathrm{t}$, where L, R and E_{0} are constants and discuss the case when t increase indefinitely.
c) The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1 \frac{1}{2}$ hours?
d) If a water at temperature $100^{\circ} \mathrm{C}$ cools to $80^{\circ} \mathrm{C}$ in 10 minutes, in a room maintained at a temperature of $30^{\circ} \mathrm{C}$. Find when the temperature of water will become $40^{\circ} \mathrm{C}$.

Q3) Attempt any four.
a) Use Taylor's series method to find the value of y at $x=0.1$, given that

$$
\begin{equation*}
\frac{d y}{d x}=x y+y^{2} \text { with } x_{0}=0, y_{0}=1 . \tag{5}
\end{equation*}
$$

b) Using Euler's method find the value y at $x=0.1$ from $\frac{d y}{d x}=x+y+x y ; y(0)=1$ taking step size $h=0.02$
c) Determine the value of y by Euler's modified method when $x=0.1$ in one step, given that $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.
d) Use Runge-Kutta method of order four to find y at $x=0.2$, given that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1 . \text { Take } h=0.2 \tag{5}
\end{equation*}
$$

e) Apply Runge-Kutta method of order four to find approximate value of y and z at $x=0.1$ for the equations $\frac{d y}{d x}=y z+x ; \frac{d z}{d x}=x z+y$. Given that $y(0)=1, z(0)=-1$. Take $h=0.1$.

SECTION - II

Q4) Attempt any three of the following:
a) Evaluate $\int_{0}^{\pi} \sin ^{2} \theta(1+\cos \theta)^{4} d \theta$.
b) Evaluate $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x$.
c) Verify the differentiation under integral sign rule for the integral $\int_{a}^{a^{2}} \frac{1}{x+a} d x$, where a is parameter.
d) Evaluate $\int_{0}^{1} x^{m-1}\left(1-x^{2}\right)^{n-1} d x$

Q5) Attempt any three of the following:
a) Trace the curve $r=3+2 \cos \theta$.
b) Trace the curve $y^{2}=\frac{x^{3}}{4-x}$.
c) Trace the curve $r=a \sin \theta$.
d) Find the length of the curve $\theta=\frac{1}{2}\left(r+\frac{1}{r}\right)$ from $r=1$ to $r=2$.

Q6) Attempt any four of the following:
a) Evaluate $\int_{0}^{1} \int_{0}^{1-x}(x+y) d x d y$.
[5]
b) Changing the order of integration evaluate $\int_{0}^{2} \int_{0}^{x^{2} / 4} x y d x d y$.
c) Evaluate $\int_{0}^{a / 2} \int_{y}^{\sqrt{a^{2}-y^{2}}} \log \left(x^{2}+y^{2}\right) d x d y$.
d) Find the moment of inertia of the area included between $y^{2}=4 a x$ and
$x^{2}=4 a y$ about the X-axis.
e) Find the mass of an ellipse plate $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ if the density at any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on it is $k x y$.

